kobblog@livedoor

酒とライブな日々(?)って感じの日記でしょうか。

Books

[books] データでいのちを描く / データビジュアライゼーションとAI . お金以外の価値の流通手段は? / 教養としてのテクノロジー を読みました . [books] 統計学が最強の学問である | 西内啓 はビジネスでデータを扱うのにとてもよい入門書でした . シンギュラリティ大学関連のイベントに参加 / Exponential Organizations . 伊賀泰代 生産性. 組織としての生産性がどうしても低くなりがちな、日本の大企業のマネジメントが読むべき一冊 . HRTはとてもシンプルなチームづくりのための原則 . 深層学習(Deep Learning)/岡谷貴之 で深層学習の語彙を手に入れよう . 人生の真ん中は50歳、世界経営計画のサブシステムを全うする〜「働き方」の教科書 . V字回復の経営を読んで、「企業の改革のステップ」は、「個人の経営行動」に通じると再認識 . いま自分が、「マーケット感覚」を身につけるための大きなチャレンジは? .

[books] データでいのちを描く / データビジュアライゼーションとAI

ちょっと気になっていたところ、ちょうど図書館で見かけたために、借りて読んでみました。

興味を持った理由は、NHKの番組制作者が、データビジュアライゼーションについて語っていたという点でした。

さらに、読み始めてから気づいたのですが、

  • NHKスペシャルなどで自分が実際に見た番組の話題も多く
  • Twitterや職場の身近な仲間でも話題になった「AIひろし」の話あり
  • さらに 2017年の冬に参加した Data Visualization meetup 2017 で登壇された方の一人が、NHKの斉藤 一成さんで、ちょうど関連する話を聞いていた

と、いろいろと偶然のつながりが重なり、とても楽しく読むことができました。

全体の構成はこんな感じでした

  • データビジュアリゼーション、視覚情報のつよさ、鳥の目、虫の目、魚の眼
  • データとAI, 人の関係
  • 伝えるということ ジャーナリストとして、だからこそ10秒で伝わる言葉も大切にしている
  • 最後に、社会課題の解決の糸口としての、データについて。ビジョン。データでいのちを描く、救えるいのちがある

なかでも、気になった点をピックアップすると、

  • 人間が外部から情報を得る手段としての「視覚」の割合は8-9割と大きい。=データビジュアライゼーション・データジャーナリズムの価値は高い
  • データサイエンティストが、視点を豊かにするためには、外へ一歩出ることをお勧めします。データを生み出した現実を知ることで、データを血の通ったものにできるはず
  • データ分析におけるツールは「望遠鏡」や「顕微鏡」といった道具と同じ
  • 数字を見る際、頭の中にモノサシを持つのが大事。納豆パックの粒の数、東京ドームの広さ、収容人数、建物1階分の高さ。データをリアリティをもって感じるために、身体感覚に基づく単位があると役立つ
  • データを1000倍処理するために必要になったのが「道具としてのAI」
  • AIの3つの役割。1.家族友人 2.道具 3.ブレイン(知的参謀)としての社会解決型AI
  • 人に何かを伝えるという行為の目的は、相手を動かすこと

...

そして、よく見ると表紙のイラストが、データ分析の本質的なところを描いていると思います。ここもぜひ注目ください。(帯どかしてほしい〜)

datainochi



お金以外の価値の流通手段は? / 教養としてのテクノロジー を読みました

伊藤 穰一さん 著の 教養としてのテクノロジー―AI、仮想通貨、ブロックチェーン を読みました。サブタイトルに具体的なテクノロジーが併記されていますが、本書の主題はテクノロジーの解説ではありません。テクノロジーの進化の真っ只中にいる joi さんが、おそらく肌感覚で感じている、このままのテクノロジーと資本主義(=Scale is Everything)だけでは、明るい未来はないのではないか、という危機感について書かれていると思います。

ちょうど時期を同じくして、国谷裕子さんの SDGsを知ろう 、という講演を聞きましたが、ここで伝えられた「このままでは私達の住む地球環境が壊れてしまうという強い危機感」にもタイムリーにつながる内容でした。

本書では、テクノロジーが「経済」「社会」「日本」にどんな変化をもたらしているか、そしてもたらそうとしているか、どんな未来にするべきだろうか、が論じられていますが、特に私の中でも気になったテーマは「経済」と「社会」に関係する、「働く」ことと、その価値に関しての部分でした。

現在、貨幣経済ができ、価値が「お金」に換算され、流通されるようになった。しかもその「お金」同士は為替という仕組みを使って世界中で交換可能になった。一方、「お金」に換算できないものの価値が正しく評価できなくなっている。そんななかでブロックチェーンを初め、暗号通貨、デジタル通貨といった技術が一般的になり、お金とは別の「価値定量化と交換のシステム(Token?)」が発明されようとしていると思います。

コミュニティ(同じ価値観を持つ人が所属する場)の中でしか通用しないかもしれない、でもコミュニティの中で通じる「コミュニティや他者のための活動」をうまく定量化し、さらに大事なのは、それを何らかの形で交換できる仕組み、が重要なインフラになるのではないでしょうか。これはグローバルに1つである必要はなく、分散したコミュニティ/システムの中でそれぞれが価値として残ればよい(デセントライゼーション)のです。

しかし、これは決して新しい概念ではなく、古くからある身近な例でいえば、お手伝いの「肩たたき券」とかも、それでしょうし、Facebookの友達の数や「いいね」の数なんかも近いところかもしれません。SDRs の目標達成のための重要な仕組みである、二酸化炭素排出権の売買/交換、なんかもこれにあたると思います。OSSで公開される「ノウハウ」や「技術」もそうかもしれません。

貨幣の原則はWikipediaによると、「価値尺度、流通手段、価値貯蔵の3機能を持つもの」とあります。いろいろと身近なところで、コミュニティでしか通用しない「貨幣」がある気がします。その貨幣やコミュニティ自体の「信頼」をブロックチェーンなどの技術で担保できると、ローカルな「貨幣」が流通可能になり、面白いことが起こる予感がしました。

最後に、全体から気になったキーワードをメモ。

  • シリコンバレー(と資本主義)のゴールは「Scale is Everything」になってしまっている
  • シンギュラリティ教
  • 働くことがイコールお金ではない、アテンション・エコノミー
  • いまのICOは最終的に損をする被害者がいるような仕組みの上に成り立っている、からダメ
  • ブロックチェーンなど新たなテクノロジーを考える視点において、大事なのは、効率化によるコスト削減ではなく、デセントライゼーションに向かうこと
  • ローカリティに学ぶべきこと、と、ローカルをつなぐ自動運転車というモビリティの関係
  • 自分の人生における「生きがい」を考えることが教育の本質
  • 足るを知る More than enough is, too much
  • ムーブメントには「ハッピー」が必要

さらっと読める本なので、他の人にも読んもらって、それをネタに議論などすると面白いかもしれません。


[books] 統計学が最強の学問である | 西内啓 はビジネスでデータを扱うのにとてもよい入門書でした

前々から気にはなっていたのですが、昨年度に会社に入ってきた新人さんの机においてあったので、「これは!」と借りて読ませて頂きました。私は現在は、データ分析にまつわる業務をしているのですが、仕事の中で感じてきたようなことがしっかりと明文化されており、非常に納得感の高い内容となっていました!一緒に働くメンバーにも、是非読んでもらいたい。


引用が多くなりますが、ざーっくり整理してみました。

ビッグデータ時代の、データへの向き合い方

統計学のビジネス活用の本質は「目的に対し何をしたらよいかという示唆を与えること」

はじめに「疫学の父」と呼ばれる ジョン・スノウのコレラの分析の話がでてきます。この話は以下のページによくまとまっていました

Argonauta:Newsletter:No.3:書評 'Snow on cholera' - 疫学の原点

非常に大きな意義のある仕事を成し遂げたスノウですが、

残念なことにスノウの主張は「科学的ではない」あるいは「確実な証拠がない」として学会や行政からは退けられたが、彼の助言に従ってコレラに汚染された水の使用を止めた町ではぱったりとコレラの感染が止まった(p.14)

というのはなかなか興味深い点です。いつの時代もKKD。いや、19世紀から何も変わっていないというのは問題ですね(笑)

このように

エビデンスは議論をぶっ飛ばして最善の答えを提示する。もちろんデータの取り方や解析方法によって、どれほどのレベルで正しいと言えるのか、どこまでのことを正しいと主張して間違いがないのかは異なってくる。しかしながら、エビデンスに反論しようとすれば理屈や経験などではなく、統計学的にデータや手法の限界を指摘するか、もしくは自説を裏付けるような新たなエビデンスを作るかといったやり方でなければ対抗できないのだ(p.18)

そして、いまやITと統計学の蜜月の時代。そんな、ビッグデータ時代に、あえてサンプリングによる情報コストの低減を、しっかりやり、トライ&エラーの方に重きをおくのもとても大事。データが大きすぎてはトライのコストも高くなるし、エラーの確認となればなおさらだ。

「まず正しい判断に必要な最小十分のデータを扱うこと」を推奨している...必ずしも最初からすべての解析を全データで行う必要はないのだ...結果を見ながらいろいろな手法やデータの切り口を試すという探索的解析においては、特にトライ&エラーの回数が重要になる。(p.54)

このあたりのプロセスと思考が、「普通の」の正しい仕様を作ってそれを実装していく答えのある「ソフトウェア開発」とは大きく違う点だと思う。いままで、ソフトウェアエンジニアでしっかり開発してきた方ほど、全く違うマインドセットになるので注意が必要になると思います。

データ分析の価値基準

データ分析の価値基準は

「その解析にかけたコスト以上の利益を自社にもたらすような判断につながるのだろうか?」という視点(p.58)

自社に利益をもたらすためには、「うーん・なるほど」だけではなく、さらに一歩先の「リアクション」が必要。そのような具体的な行動を引き出すために必要なのが、3つの問い。

1. 何かの要因が変化すれば利益は向上するのか?

2. そうした変化を起こすような行動は実際に可能なのか?

3. 変化を起こす行動が可能だとしてその利益はコストを上回るのか?

この3つの問に答えられた時点ではじめて「行動を起こすことで利益を向上させる」という見通しが立つ(p.59)

この3つの問いに、真摯に向き合い応える分析、それをビジネス意思決定者から引き出す分析が、本当に重要と思う。

説得力を高めるための、統計的検証による、「有意な差異」

データの中から、何らかの誤差とは考えにくい偏りを発見すれば、それは重要な示唆に富む仮説となる。こうした有望な仮説を抽出するスピードと精度こそが現代における統計学の第一の意義であり、うだうだ会議で机上の空論を戦い合わせることなどよりもよほど有益だろう(p.95)

データを見てデータドリブンで判断していこうぜ、という雰囲気は、明らかにでてきていると思う。が、そこに対して、このデータは本当に信用していいデータなの? その問いに応える手法はやはり重要。そこが崩れると誰も信用してくれなくなるし、やっぱりそれではKKDとあまり変わらない。分析からでてきたデータをみせた上、そのデータがどれほど信用できるのか、もしくはできないのか、客観的な目安が提示できるようになりたい。

とりあえずランダムに実験する価値

正解のない判断を個人のセンスに任せるぐらいなら、とりあえずランダム化して定期的に評価する、というやり方の方が長期的なメリットは大きい(p.121)

こういった実験的なアクションを継続して取れ、さらにそこからの学びを得て、次に活用する、そういった意志決定方法がより成長につながる、というのは面白い気づきだと思う。もちろん行動を起こすためのコストは場合によってはあるだろうが、逆に言えば、いかにそれを最小化し、行動につなげられる仕組みが作れるか、これが不確実な時代でチャンスを掴む者とそうでない者を分けるのだなと改めて感じた。個人のレベルでいえば、そういう環境に自分の身をおく、そういう環境を選ぶというのも重要と思う。

21世紀の統計家には求められるスキルは

その後、具体的な分析手法(回帰、マイニング、予測など)が、ひと通り紹介された上で、

ポイントは予測モデルから今後何をすべきかを議論したいのであれば、回帰モデルの方が役に立つ。こうした違いを理解したうえで適切な手法を選び分けることが、21世紀の統計家には求められるのである。(p.244)

統計学と計量経済学の「本質的」な違い、と我々のチャレンジ

この2つの学問は本質的な哲学が違う。

統計学は「帰納的」であり、計量経済学は「演繹的」。あるいは「実証」と「理論」。(p.259)

さらには、「工学」と「科学」も似ているかもしれない。我々がビジネスの世界で、データをより「科学的に」扱いたい、と取っているアプローチは、この2つの哲学の合流点なのかもしれないし、そうでありたいなと思った。

似たタイトルのシリーズがたくさんでてますが、「実践編」いつでも見れるようにと私も買いました。他は読み比べてませんが、「実践編」はより実践的と思います。


シンギュラリティ大学関連のイベントに参加 / Exponential Organizations

先日、シンギュラリティ大学 Japan Global Impact Challengeのファイナリスト発表のイベントを見にいってきました。告知サイトの造りがショボいのが気になる...

シンギュラリティ大学ジャパン・グローバルインパクトチャレンジ Winner's Ceremony
GICは、10億人に影響をあたえるようなビックなアイデアのコンテスト、とのことで、一体どんなぶっとんだアイデアが出てくるのかと楽しみにしたのですが、予想外にファイナリストの7つのアイデアは、案外こぢんまりしていて、そこはちょっと期待外れでした。10億人に影響を与えるって、なかなかすごいテーマですよね。

コンテスト以外にいくつか講演もありました。シンギュラリティ大学での活動の紹介や、飛躍的に進化している技術の最新動向の紹介、SUのプログラムで学んだ佐宗さんによる飛躍型企業になるための方法、また人工知能の研究者、東大の中島さんよる今後の人工知能について。これら講演はとても示唆を得られるものでした。

キーワード的にいくつか示唆・メモを上げておきます。

佐宗さん

  • MTP(Massive Transformative Purpose)
  • 6D(Digitized, Decptive, Disruptive, Dematerialize, Demonetize, Democratize)
  • MTPを妄想する方法
  • 企業の意義は、いまの大きな規模仕組みの効率化から、より早い規模の学びを得ることに変わる。そのためにはMTPを出していく必要がある
  • Issue Driven(How)とVision Driven(What if)
  • ExO(Exponential Organization) Canvas
  • 妄想を形にするためのOKR(Objectives and Key Results)

中島さん

  • 知能とは、「情報が足りない時に、それを何とかする力」
  • 知能には環境とのインタラクションが重要
  • 環境に対する2つの視点:鳥視点と虫視点。鳥は環境を俯瞰して捉え、虫は環境の中に入る。内から作用し変えられる
  • 今後のAIは虫のような視点が必要になるのではないか。この虫視点は、日本人が得意としている視点
  • そして環境に内から作用して、「得たいデータを自身で得ていく」そんなAIになっていくんじゃないか

本イベントを通じて、初めて聞いたシンギュラリティ大学用語=MTP, ExO, 6Dなどにも興味を持ったので、講演の中でも紹介されていた「Exponential Organizations」も読んでみました。非常に理解が進みました。

シンギュラリティ大学が教える飛躍する方法
サリム・イスマイル
日経BP社
2015-08-05

MTPやOKRの考え方は、企業だけでなく、自分の人生でも役立つ考え方と思いました。仕事や働き方・職場ではもちろん、人生でも、MTPを妄想し、OKRを意識して活用していきたいなと思います。OKRはもう少し勉強してみようと思います。

伊賀泰代 生産性. 組織としての生産性がどうしても低くなりがちな、日本の大企業のマネジメントが読むべき一冊

書店でも平積みで見ることの多い伊賀泰代さん著の「生産性」を読了しました。

著者ご自身のマッキンゼーでのキャリア後半が「採用」と「人材育成」の部門だったそうで、個人の生産性という話に加え、組織としての目線が多分にあったのが非常に興味深かったです。生産性って個人では考えてはいても、いざ組織で、となると、なんでも「可視化、定量化」とか「効率をばかり追う」とかなり、どうもギスギスするネガティブなイメージがつきまとうな、と感じていたからです。(そもそも会社でお金もらって働いているのに、仕事の仕方やアウトプットが個人のプライバシーだという考え方が、本来おかしいのですが...)

  • 生産性=アウトプット(付加価値)/投入資源。同じ資源でアウトプットを最大化するアプローチ、投入資源を最小するアプローチ、両方ある。後者は「効率・コスト削減」と言われるが、決してそれだけじゃない。
  • 生産性と創造性(イノベーション)は相反するものではない。そもそも創造性の高い仕事「しか」していない人はいないはずで、より創造性の高い仕事のアウトプットを増やすために、他の仕事の生産性も最大化し、そもそもどうやって生産性を上げるか、と頭を捻るところにイノベーションの種があることも多い

といった感じで「生産性」とはなにか。なぜ大事なのか、という話が説明されつつ、組織としての目線では、人材育成や上司・部下の話に続きます。外資の「マッキンゼー」とはいっても、日本法人はあくまで日本の労働環境が適用されるので、決して遠い国の話ではなく、年功序列で流動性の低い、日本の企業でやれること目線で説明されているのも非常に実用的だと感じました。

  • 上司・マネジメントの役割は「組織の生産性を上げる」ことと、不確定要素のある状況で「決断」し「リスクに備える」こと
  • どのように生産性を上げる方向にモチベートできるか、目標設定・評価の考え方
  • 人材育成の目的は、「生産性を上げること」そのもの
  • トップパフォーマと一般社員の2:6:2。トップパフォーマ、ハイパフォーマの伸ばし方
  • トップパフォーマが会社に求めているのは、成長機会と、成長支援のための目標設定と振り返り。トップパフォーマは社外のトップパフォーマがライバル
  • 実際の業務の生産性に直結するロールプレイング研修

終盤は

  • 生産性の高い「資料の作り方」
  • 生産性の高い「会議の仕方」

といった感じで、すべての社員に向けた具体的なアドバイスとなっていました。

全体としては、「組織としての生産性がどうしても低くなりがちな、日本の大企業のマネジメントが読むべき一冊」だと思います。とても論理的かつ、実用的な内容になっており、本書の目的どおり、非常に生産性の高い本になっていると感じました。



HRTはとてもシンプルなチームづくりのための原則

JAWS Days 2017 のあるセッションで紹介されていた、Team Geek - Googleのギークたちはいかにしてチームを作るのか - を読みました。良かったです。「HRT」というキーワードは常に思い出すべきよいキーワードでした。

HRTとは

  • Humility/謙虚
  • Respect/尊敬
  • Trust/信頼

の頭文字で、ハートと呼ぶ。すべての人間関係の衝突は、HRTの欠如によるもの。自分事で考えても、特に謙虚が足りていなかったなぁと身につまされます。そして少なくとも意図したかはおいても、うまく行っている場合は、お互いが信頼を持ち合っていると感じました。信頼に至ることができなかった場合はきっと、謙虚・尊敬が足りていなかったんだろうなぁ。

まとめると?

引用していると切りがないのですが、、、良いチームで良いプロダクトを作るため(本書はあくまで、よいプロダクトを作るためのチーム、という立場という理解)にはどうしたらよいか、をまとめてみました。

  • ハイレベルの同期=ミッションステートメント をした上で、仕事のコミュニケーション手段(Mtg, 1on1, Mail, Chat, 電話, ソースコード,,)は丁寧に選択・作る
  • チームにはキャプテンが必要で、キャプテンは自分のエゴではなくし、チームのエゴ(文化)を育む。問題解決はキャプテンではなく、チームメンバーが行うように支援する=特にここでHRTが大事
  • ここまでできたら自分とチームの責任範囲を「外側に」広げ、チームの価値を高める。ここでの組織間の関係性でもHRTが大事
  • さらに作り上げたプロダクトを使う顧客にもHRTを持って関係性を構築し、プロダクトの成功に役立てる=もちろん顧客と開発者の関係においてもHRTだ

シンプルな原則 HRT

とてもシンプルな原則 HRT は、チームづくりはもとより、さまざな局面で役立つキーワードでした。


深層学習(Deep Learning)/岡谷貴之 で深層学習の語彙を手に入れよう

いまや猫も杓子もAIですが、そのきっかけはおそらくDeepLearningによる画像識別の成功でしょう。OSS的な動きも含め、どんどんと研究が実装になり世の中に影響を与えています。研究がこれほどのスピード感で実世界で利用されるようになったという点もこれまでとは全く違ったことが起きているのではないでしょうか?発表された論文に実装コードが公開されているgithubのリンクがある、なんてこともよくあるそうです。

深層学習(多層ニューラルネットワーク)といっても実はざまざまな分野や解決する問題ごとに違うネットワークが開発されていることが、本書でわかりました。基本的な構造について勉強することができます。例えば、

  • 順伝播型ネットワーク(FNN)
  • 畳込みネットワーク(CNN)
  • 再帰型ニューラルネット(RNN)

です。

そして、それら代表的なネットワークの説明の中で、どうやって学習するか、どうやって汎化性能と過学習のバランスを獲得するかというおそらく多層ニューラルネットワークでいちばん本質的な課題についてどのように解決していったのか、学習のノウハウやトリックも含めて解説があり、(完全にはわからないところもありつつも)深層学習の世界の語彙を背景と共に理解することができました。

また近年、多層ニューラルネットワークが急速に性能を上げることができた背景として、

  • 一定上の規模の学習データがあること
  • クラスタ/並列処理を含む、計算機能力の向上

が上げられています。

まさに深層学習は、近年のインターネット/クラウドコンピューティングの成果といえるんですね。これから深層学習関連では、どんどん新しい手法が開発されていくと思いますが、本書を読むことで、そういったニュースを一歩深く、理解できるようになるんじゃないかと思います。


人生の真ん中は50歳、世界経営計画のサブシステムを全うする〜「働き方」の教科書

2016年を振り返ろうとしていて、アウトプットして(書いて)おかないとすっかり忘れていしまうことを実感したので、ちょぼちょぼでも感じたことを書き出して見ることにします。

還暦で日本初のネット生保(ベンチャ)を立ち上げた出口さんが、それまでの経験を語るもので、20代、30代-40代、50代と考えるべきことを整理してくれています。

昨年、キャリア形成関連の社内研修で、宮城まり子さんが「20歳〜60歳」と捉えて「キャリア」を語り 「40歳は折り返し地点」と話されているのを聞き、そのときには、まだまだこれから!と、多いに勇気を頂いたのですが、出口さんは50歳が「人生の真ん中」といいます。20歳〜80歳を平均的な「人生」と捉え、50歳が真ん中というのです。本書の中でも、人生にとって仕事は3割と言われている点からも、キャリア≠人生ということなんだと思います。

本書から、いくつか印象に残ったフレーズを引用(一部要約)します。

現実の人生では、人間にはそれほど多くのチャンスが与えられているわけではありません。むしろ、ほとんどが「一期一会」なのです。

果敢な意思決定をできるのは、ダイバーシティがあって、それぞれのバックグラウンドが違うから

→バックグラウンドが違うから、きちんとファクトとロジックで合理的に説明・意思疎通・議論をしないと話が進まない、結果として意思決定は早まる!

時間とお金さえかければほとんどのビジネスモデルは真似される...ここに差別化が埋めれる余地はありません。だとすると、差別化の要因になり得るのは、従業員のやる気とモチベーションに尽きる

部下に仕事をさせるのは仕組みがすべてです。仕組みさせつくれば、誰でもそれなりに仕事をやり始める

→いい仕組みを作ることを考えたい

愚かな管理者ほど、有限の感覚に乏しい

いい機会だと思ってすべてを部下に任せると、何もわからなくなってしまいました。自分で書いているからこそわかっていた細かいロジックが、部下に任せた途端にわからなくなったのです。極度の不安が襲ってきました。

→私も昨年、40になったのですが、そんななかで捨てることへの不安はやはりあります。どうしたらその不安に打ち勝てるのかは教えて欲しい!

50代の起業は合理的かつ健全。...ベンチャに必要な目利き、資金調達力、人脈、ノウハウなどの条件は、20代に比べれば50代のほうがはるかに整っているのです

自分のシゴトについても「世界経済計画のサブシステム」として、何ができるか、何を目的にするか、と考えてみると面白くなりそうだなと思ったお正月でした。


V字回復の経営を読んで、「企業の改革のステップ」は、「個人の経営行動」に通じると再認識

「V字回復の経営」を読みました。

この本は1-2年ほど前に会社の「経営」系の研修に参加した際、一緒のチームになった同僚に紹介されていつか読もうと購入しツンドク状態だったもの。研修はかなり修羅場で、、その後も仕事が忙しかったこともありなかなか読めていなかったが、ふと、思い起こして読みだすことができました。これが読み始めてみると、おもしろい!! 1週間で一気に読んでしまいました。読み進めながら、その研修での修羅場が思い出され、また改めて、危機感というか、「やる気」がでてきました。

本書のストーリーは、事業再建を専門にするコンサルタントである三枝が、過去にかかわった日本企業5社の事業改革を題材にしたもの。ストーリーはノンフィションとフィクションの間、つまり5社での体験を素材に、どの企業にもあてはまる「経営改革のモデル・ストーリー」を構成したものである。 本書はフィクションであるが、それを感じさせない強烈なリアリティーを放っている。改革のもと、社内に生じる政治力学、葛藤、抵抗勢力とのかけ引きといった細部が徹底して描きだされているのだ。著者はストーリーの進行に合わせて組織硬直化の「症状」を分析したり、改革の「要諦」をまとめたりして、逐一処方箋を示していく。( Amazon.co.jp 解説より抜粋)

いくつも書き留めるべきフレーズなどはあったのですが、特にひとつ選ぶとしたら「経営リテラシー(読み書き能力)」という言葉。実はこの経営リテラシーって「大企業」でふつーに働いている間には、ただでは身につかないものだと再認識した。読み書き、というとおり、課題の認識の仕方、経営数字の見方、経営戦略の表現方法=コミュニケーション能力。なぜなら、本書内で、「計画を組む者と、それを実行する者は同じ」でなければならない、とあるとおり、逆にいえば、通常の業務の中では多くの場合、一般社員は「経営リテラシー」は必要とされていない/使うことがない(ことが多い)から。これではだめですね。一般業務に「経営」的視点をいれて、いま進めているシゴトの「目標」と行動の「意味」を意識しつづけねばと再認識しました。

以下、自分用メモ:

経営リーダーシップとは:下の者が妥協的な案を固めてしまう前の、多少まだ生煮えという段階で、積極的に下に入り込んで、本来取るべき戦略や基本思想インプットしてやる、その行動こそが、経営におけるリーダシップの本質

組織の「目標」や行動の「意味」が皆に共有されているか。そのためには、シンプルなコンセプトが必要。 集団として現実を整理ためには、皆が参照すべき「考え方」つまり「コンセプト」をトップが提示することが重要 ⇒ 例えば、商売の基本サイクル:創って、作って、売る、をとにかく早く回す

開発のうまくいかない原因

  1. 会社に明確な「戦略」がない。そのため、開発テーマをふるい分ける基本思想がハッキリ打ち出されない
  2. 戦略がないので時間軸が甘くなる
  3. 開発の意思決定者が誰だかよくわからなくなっている

リエンジニアリング革命(1993)での、ハマー教授のコンセプトは、

  1. 時間の戦略 : タイムベース競争戦略 ハウト
  2. バリューチェーン(価値連鎖) : 競争優位の戦略 ポーター
  3. 情報技術
  4. 顧客志向
  5. 劇的変革 の考えかたを融合させたもの

分業の「機能別組織」に閉じこもっていないか?

  • 事業の存在価値があると言い切れるストーリーが描けているか?
  • 計画を組む者と、それを実行する者は同じでなければならない。

戦略連鎖。戦略マップとはトップの考え方を幹部に徹底する戦略指針。 マトリックスにするのが効果的。漫談的、総花的計画書は戦略マップが持つべきコミュニケーション効果が薄い このマトリックスが、部門と部門をつなげる役割を果たす

期待のシナリオ。間の前の現実に対する判断基準は「明確な数値」になっていることもあれば、当事者の心のなかに自分たちの「こだわり」「思い入れ」あるいは「あるべき姿」のイメージとして描かれる願望だけの場合もある。 いずれにせよ、俊敏な成功者は、自分としてはこうなってほしいという「期待のシナリオ」を明確に持っている。 それに対して現実がうまくいっていないときに、強いリーダーは「このままではまずい」「何とかよくしよう」と何らかの行動を起こす。期待のシナリオが曖昧なまま放置されていると、「具体性不足」の壁にぶつかる。

改革(経営行動) 9つのステップ

  1. 期待のシナリオ
  2. 成り行きのシナリオ
  3. 切迫感
  4. 原因分析
  5. シナリオ
  6. 決断
  7. 現場への落し込み
  8. 実行
  9. 成果の認知

いま自分が、「マーケット感覚」を身につけるための大きなチャレンジは?

ちきりんさんの「マーケット感覚を身につけよう---「これから何が売れるのか?」わかる人になる5つの方法」を読みました。目からウロコ!という内容ではないですが、非常に簡単な言葉でかつ「生活感」あるあふれる言葉で語られるため、とても楽しく読むことができました。前作「自分のアタマで考えよう」はこちらも図書館で借りて読んだ後に購入してしまったので、こちらも欲しくなってしまいました 笑

社会がマーケット(市場)化しているなかで「誰」にどんな「価値」をマッチングするか、が商売となる、非伝統的な価値の出現:不特定多数の「感動の需要者」たちと不特定多数の「感動的な演技や行為の供給者」がマッチングされ、感動を取引している

すなわち何が価値か、もしくは何が価値になるかを見極める必要があるといいます。

マーケット感覚を身につける方法は、
  1. プライシング能力を身につける
  2. インセンティブシステムを理解する
  3. 市場に評価される方法を選ぶ
  4. 失敗と成功の関係を理解する
  5. 市場性の高い環境に身をおく

特に「プライシング感覚」は、今の自分にも劣っているなと感じた部分です。毎日消費しているものが、いくらの価値があるのか、考える習慣。そしてそれを考える際に「コスト発想」ではなく「マーケット発想」で考えることの重要さ。会社で何か商品を考える際、値付けを考える際にはどうしても「コスト発想」になってしまいますが、逆にいち顧客として考えた場合は当然「コスト」なんてしったこっちゃないですから、「マーケット発想」にならざるを得ないですよね。これは一体どういう価値があって、自分だったらいくらで買うのか。そもそも同じような「モノ」がいくらでも手に入るいま、この店で、この商品をを買っているのは、自分はどんな価値を得ているのだろうかと、考えてみるのはとても面白いと思います。この時どうしても、「誰」を意識せざるを得ないのです。

身近なところでも、多くの方が会社をやめて、マーケットに出て挑戦をしています。彼らは会社が「変わらない」から、会社を「替える」のだと思います。自分はこのままだと沈みゆくドロ船に取り残されて気づいたら何も残らないのではないかと不安にもなります。(かといって、単純に自分も会社をやめてでていく、という選択もしていません)「閉鎖的な大企業」にいながらにしてどうやって「マーケット感覚」を養うかは、大きな課題と感じていました。が、実はこの「マーケット感覚」は、商品開発の分野で言えば、「顧客中心」「UX中心」という考え方そのものと気づきました。

市場に評価される方法を選ぶ、の中で紹介される「属人的な組織評価」vs.「多様な市場評価」なんかもまさに!です。大きくマーケットが広がっているこの時代、決済者の意志とは関係のないところに、市場の判断はあります。意思決定者間の合議のもと、価値のない(かもしれない)ものを作りこむよりも、「とりあえずやってみてから決める」。評価や意思決定プロセスを組織型から市場型へと移行させないといけないのです。

現状、なかなかプロセスやマインドの切り替えはハードルは低くはないですが、社会や市場・他の企業の技術にもアンテナを広げつつ、「顧客中心」「UX中心」の開発プロセスを構築できるか=会社を「変えられる」のかが自分のとって大きなチャレンジであり、それをやりきることが、いまの私の状況では、最も、マーケット感覚を身につける方法なんじゃないかと思いました。それは、そのまま、会社の外でも通用する能力だと納得した気がします。

訪問者数

    Archives
    Categories
    記事検索
    Recent Comments
    Recent Trackbacks
    twitter
    • ライブドアブログ